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Abstract
For an ideal D-dimensional Fermi gas under generic external confinement we
derive the correcting coefficient (D − 2)/3D of the von Weizsacker term in
the kinetic energy density. To obtain this coefficient we use the Kirzhnits
semiclassical expansion of the number operator up to the second order in
the Planck constant h̄. Within this simple and direct approach, we determine the
differential equation of the density profile and the density functional of the
Fermi gas. In the case D = 2, we find that the Kirzhnits gradient corrections
vanish to all order in h̄.

PACS numbers: 03.75.Ss, 31.15.Ew, 31.15.Gy

1. Introduction

At ultra-low temperatures macroscopic effects of quantum statistics are observable with
bosonic vapors of neutral alkali–metal atoms [1, 2]. In the last few years quantum degeneracy
has also been achieved with fermionic atoms [3–7]. For fermions, it has been predicted that a
reduced dimensionality strongly modifies density profiles [8–11], collective modes [12] and
stability of mixtures [13, 14]. In all these papers a Thomas–Fermi–von Weizsäcker density
functional approach is used [15, 16].

Some years ago, Holas, Kozlowski and March [17] derived for a D-dimensional ideal
Fermi gas a correcting coefficient to the von Weizsacker term in the kinetic energy density.
They used a response-function approach based on the knowledge of the static susceptibility
in a D-dimensional space [18]. The aim of this paper is to recover the result of [17] by using
the Kirzhnits semiclassical expansion of the number operator [19]. We shall show that the
Kirzhnits expansion in powers of h̄ is a direct and simple approach to get the density profile
and the energy of a D-dimensional ideal Fermi gas under generic external confinement.
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2. Thomas–Fermi–von Weizsacker formulation

For an ideal D-dimensional spin-polarized Fermi gas in a hypercubic box of side L, the number
of particles at zero temperature is given by

N =
∫

dDr dDp
(2πh̄)D

�

(
µ̄ − p2

2m

)
, (1)

where �(x) is the Heaviside step function. The chemical potential µ̄, which is the Fermi
energy, fixes the number of particles N. Into the formula we have substituted the discrete
summation over box quantum numbers with the 2D-dimensional integral over single-particle
phase-space variables (r, p). This approximation becomes exact in the limit L,N → ∞ and
n = N/LD constant.

One can easily integrate over r and p in equation (1) and finds the following expression
for the uniform density:

n =
(

m

2πh̄2

)D/2
D

2�
(

D
2 + 1

)FD(µ̄), (2)

where

FD(µ̄) =
∫ ∞

0
dy yD/2−1�(µ̄ − y) = 2

D
µ̄D/2 (3)

measures the number of states with the energy less than or equal to µ.
In many papers the inclusion of an external potential U(r) is treated within the so-called

local-density approximation, i.e. by simply using a local chemical potential

µ(r) = µ̄ − U(r) (4)

in equation (2), which becomes

n(r) =
(

mµ(r)

2πh̄2

)D/2 1

�
(

D
2 + 1

) . (5)

This expression of the local density n(r) can be obviously obtained from equation (1) by
inserting into it equation (4) and integrating over momenta p. Equation (5), also called the
Thomas–Fermi formula of the density profile[15], can be written in the following form,

2πh̄2

m
�

(
D

2
+ 1

)2/D

n(r)2/D + U(r) = µ̄ (6)

to make explicit the dependence of the chemical potential µ̄ on the local density n(r). It is
important to stress that equation (5), and also equation (6), is semiclassical because it is derived
by neglecting the fact that in quantum mechanics the kinetic operator T̂ = −h̄2∇2/(2m) and
the operator µ̂ = µ(r) = µ̄ − U(r) do not commute. Historically, it was von Weizsäcker
[16] the first to introduce a gradient correction (in the case D = 3), which takes into
account phenomenologically the increase of kinetic energy due spatial variation of the density.
Including the gradient correction of von Wiezsäcker in equation (6) one has

h̄2

2m

[
1

4

(∇n(r))2

n(r)2
− 1

2

∇2n(r)
n(r)

]
+

2πh̄2

m
�

(
D

2
+ 1

)2/D

n(r)2/D + U(r) = µ̄. (7)

Remarkably, the gradient correction of von Weizsäcker does not depend on the dimensionality
of the system, as shown in [17].
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3. Kirzhnits gradient expansion

Let us now consider a full quantum-mechanical treatment. In quantum mechanics the number
operator is

N̂ = �(µ̂ − T̂ ). (8)

The exact local density n(r) can be written by using the number operator N̂ , the eigenstate
|r〉 of the position operator and the eigenstate |p〉 of the momentum operator in the following
way:

n(r) = 〈r|N̂ |r〉 =
∫

dDp
(2πh̄)D/2

〈r|N̂ |p〉 e−ip·r/h̄, (9)

where the last expression has been obtained by inserting the completeness∫
dD p|p〉〈p| = 1, (10)

and the formula 〈p|r〉 = e−ip·r/h̄/(2πh̄)D/2. According to Kirzhnits [19, 20], one can expand
the operator N̂ at the second order of h̄ in the following way:

N̂ |p〉 = �(µ̂ − T̂ )|p〉 = �(µ̂ − T )|p〉 + 1
2�′′(µ̂ − T )[µ̂, T̂ ]|p〉

− 1
6�′′′(µ̂ − T ){[µ̂, [µ̂, T̂ ]] + [T̂ , [µ̂, T̂ ]]}|p〉 + 1

8�′′′′(µ̂ − T )[µ̂, T̂ ]2|p〉,
(11)

where [µ̂, T̂ ] = µ̂T̂ − T̂ µ̂ and T̂ |p〉 = p2/(2m)|p〉 = T |p〉. Here �′(x) is the first derivative
of �(x) with respect to x, i.e. �′(x) = δ(x) is the Dirac delta function, �′′(x) is the second
derivative of �(x) and so on. It is important to observe that equation (11) does not depend
on the dimensionality of the system. Kirzhnits used equation (11) in the special case D = 3
[19], while here we consider it for a generic D. Note that higher order terms of the Kirzhnits
expansion of the number operator N̂ involve higher derivatives of the Heaviside function
�(µ̂ − T ) [19, 20].

The term 〈r|N̂ |p〉 in equation (9) can now be calculated by using the Kirzhnits expansion.
In this way, after straightforward but lengthy manipulations, at the second order in h̄

equation (9) becomes

n(r) =
(

m

2πh̄2

)D/2
D

2�
(

D
2 + 1

) {
FD(µ(r)) +

h̄2

2m

[
1

6
∇2µ(r)F ′′

D(µ(r))

+
1

12
(∇µ(r))2F ′′′

D (µ(r))
]}

, (12)

where F ′
D(µ) is the first derivative of FD(µ) with respect to µ, F ′′

D(µ) is the second derivative
and so on. In the Kirzhnits expansion, after integration over momenta, each term containing a
nth derivative of the Heaviside function �(µ̂ − T ) gives rise to a term containing a (n − 1)th
derivative of the function FD(µ). As a consequence, in the special case D = 2, where
F2(µ) = µ, only the leading term of the Kirzhnits expansion is different from zero, i.e. with
D = 2 the Kirzhnits gradient corrections vanish to all order in h̄.

In the case D = 3, i.e. the three-dimensional Fermi gas, equation (12) becomes

n(r) =
(

2mµ(r)

h̄2

)3/2 1

6π2

{
1 +

h̄2

2m

[
1

8

∇2µ(r)
µ(r)2

− 1

32

(∇µ(r))2

µ(r)3

]}
, (13)
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which is exactly the formula reported in the book of Dreizler and Gross [20], which considers
only the three-dimensional case. In the case D = 2, i.e. a two-dimensional Fermi gas, we
have seen that all the quantum corrections are zero, while in the D = 1 case these corrections
are in general finite, and in particular the h̄2 ones.

We observe that the vanishing of quantum corrections in the Kirzhnits expansion for
the two-dimensional ideal Fermi gas is a consequence of the linear number of states, i.e.
constant density of states, in this specific dimension. Obviously, this does not mean that
with D = 2 the Thomas–Fermi formula of the density profile is exact; it simply means that
the Kirzhnits expansion fails in the D = 2 case. For instance, recently Brack and van Zyl
[21] have found that, for the a 2D ideal gas of fermions under harmonic confinement, the
quantum kinetic energy is exactly reproduced by the Thomas–Fermi kinetic energy without
gradient corrections, but only using the exact density of states, which is different from the
Thomas–Fermi one [21].

Equation (12) has a serious turning point problem The local chemical potential µ(r) =
µ̄ − U(r) becomes zero at the classical turning points, where µ̄ = U(r) Therefore, the
gradient terms in equation (12) diverge at the turning points To overcome this problem
we invert equation (12) finding µ(r) as a function of n(r) Obviously, due to the gradients
this inversion cannot be done exactly but only in a perturbative way First we note that
equation (12) has the following structure:

n(r) = Aµ(r)D/2

(
1 +

h̄2

2m
B[µ(r),∇µ(r)]

)
, (14)

where A = (m/(2πh̄2))D/2/�(D/2 + 1). Then from this expression we get

µ(r) = A−2/Dn(r)2/D(
1 + h̄2

2m
B[µ,∇µ(r)]

)2/D

= A−2/Dn(r)2/D

{
1 − 2

D

h̄2

2m
B[µ(r),∇µ(r)] + O(h̄4)

}
, (15)

where O(h̄4) contains terms of order h̄4. Finally, we find, at the second order in h̄, this
expression

h̄2

2m

(
D − 2

3D

) [
1

4

(∇n(r))2

n(r)2
− 1

2

∇2n(r)
n(r)

]
+

2πh̄2

m
�

(
D

2
+ 1

)2/D

n(r)2/D + U(r) = µ̄.

(16)

This result differs from that of von Weizsäcker, equation (7), simply because there is a factor
(D−2)/3D in the gradient terms. We stress that the von Weizsäcker gradient terms are purely
phenomenological, while the Kirzhnits gradient terms are based on a perturbative expansion of
the exact number operator. In the scientific literature often the von Weizsäcker gradient terms
are modified by inserting a coefficient c in front of them. For instance, with D = 3, March
and Tosi [22] suggest c = 1/3, while Zaremba and Tso [23] suggest c = 1/36. Remarkably,
both the phenomenological improvements disagree with the Kirzhnits result c = 1/9.

As previously discussed, the coefficient (D −2)/3D was found some years ago by Holas,
Kozlowski and March [17] by using a response–function approach based on the knowledge
of the static susceptibility in a D-dimensional space [18]. Here we have instead applied the
more direct Kirzhnits expansion. For D = 3 the factor gives the familiar coefficient 1/9, for
D = 2 the factor is zero and for D = 1 the factor is −1/3.
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It is straightforward to show that the differential equation (16) is obtained by minimizing
the energy density functional

E[n(r)] =
∫

dDr

{(
D − 2

3D

)
h̄2

8m

(∇n(r))2

n(r)

+
2πh̄2

m

D

D + 2
�

(
D

2
+ 1

)2/D

n(r)(D+2)/D + U(r)n(r)

}
(17)

with the constraint

N =
∫

dDr n(r), (18)

which fixes the chemical potential µ̄. Equation (17) can be used as a starting point to investigate
mixtures of interacting Fermi atoms and also electrons in nanotubes.

4. Conclusions

We have been able to determine the equations for the energy and the density profile of a
D-dimensional ideal Fermi gas with external confinement by using the Kirzhnits expansion.
These equations, which are correct at the second order in the Planck constant h̄, can be
improved by including higher order terms of the Kirzhnits expansion of the number operator
[19]. In fact, in some cases, h̄-expansions can be calculated to all orders and resumed to
give the exact result [24]. In the special case D = 2 we have found, by using the Kirzhnits
expansion, that all h̄ corrections to the Thomas–Fermi formula of the density profile are zero.
This is a direct consequence of the constant density of states in a two-dimensional ideal gas
and it means that the Kirzhnits expansion is not reliable under these conditions. We recall that
gradient corrections to the Thomas–Fermi formula of the density profile have been analyzed
with different semiclassical techniques in previous studies [17, 25]. On the other hand, to
our knowledge, this is the first time that the leading terms of the Kirzhnits expansion have
been directly obtained for an ideal Fermi gas in a D-dimensional space and generic confining
potential.
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